Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Dev Biol ; 510: 50-65, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38521499

RESUMO

Bilaterian animals have evolved complex sensory organs comprised of distinct cell types that function coordinately to sense the environment. Each sensory unit has a defined architecture built from component cell types, including sensory cells, non-sensory support cells, and dedicated sensory neurons. Whether this characteristic cellular composition is present in the sensory organs of non-bilaterian animals is unknown. Here, we interrogate the cell type composition and gene regulatory networks controlling development of the larval apical sensory organ in the sea anemone Nematostella vectensis. Using single cell RNA sequencing and imaging approaches, we reveal two unique cell types in the Nematostella apical sensory organ, GABAergic sensory cells and a putative non-sensory support cell population. Further, we identify the paired-like (PRD) homeodomain gene prd146 as a specific sensory cell marker and show that Prd146+ sensory cells become post-mitotic after gastrulation. Genetic loss of function approaches show that Prd146 is essential for apical sensory organ development. Using a candidate gene knockdown approach, we place prd146 downstream of FGF signaling in the apical sensory organ gene regulatory network. Further, we demonstrate that an aboral FGF activity gradient coordinately regulates the specification of both sensory and support cells. Collectively, these experiments define the genetic basis for apical sensory organ development in a non-bilaterian animal and reveal an unanticipated degree of complexity in a prototypic sensory structure.


Assuntos
Anêmonas-do-Mar , Animais , Anêmonas-do-Mar/genética , Sistema Nervoso , Gastrulação/genética , Genes Homeobox
2.
Life Sci Alliance ; 7(5)2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38467419

RESUMO

Starvation causes the accumulation of lipid droplets in the liver, a somewhat counterintuitive phenomenon that is nevertheless conserved from flies to humans. Much like fatty liver resulting from overfeeding, hepatic lipid accumulation (steatosis) during undernourishment can lead to lipotoxicity and atrophy of the liver. Here, we found that although surface populations of Astyanax mexicanus undergo this evolutionarily conserved response to starvation, the starvation-resistant cavefish larvae of the same species do not display an accumulation of lipid droplets upon starvation. Moreover, cavefish are resistant to liver atrophy during starvation, providing a unique system to explore strategies for liver protection. Using comparative transcriptomics between zebrafish, surface fish, and cavefish, we identified the fatty acid transporter slc27a2a/fatp2 to be correlated with the development of fatty liver. Pharmacological inhibition of slc27a2a in zebrafish rescues steatosis and atrophy of the liver upon starvation. Furthermore, down-regulation of FATP2 in Drosophila larvae inhibits the development of starvation-induced steatosis, suggesting the evolutionarily conserved importance of the gene in regulating fatty liver upon nutrition deprivation. Overall, our study identifies a conserved, druggable target to protect the liver from atrophy during starvation.


Assuntos
Fígado Gorduroso , Inanição , Animais , Humanos , Peixe-Zebra , Fígado Gorduroso/genética , Inanição/complicações , Larva , Atrofia
3.
bioRxiv ; 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38260657

RESUMO

Starvation causes the accumulation of lipid droplets in the liver, a somewhat counterintuitive phenomenon that is nevertheless conserved from flies to humans. Much like fatty liver resulting from overfeeding, hepatic lipid accumulation (steatosis) during undernourishment can lead to lipotoxicity and atrophy of the liver. Here, we found that while surface populations of Astyanax mexicanus undergo this evolutionarily conserved response to starvation, the starvation-resistant cavefish larvae of the same species do not display an accumulation of lipid droplets upon starvation. Moreover, cavefish are resistant to liver atrophy during starvation, providing a unique system to explore strategies for liver protection. Using comparative transcriptomics between zebrafish, surface fish, and cavefish, we identified the fatty acid transporter slc27a2a/fatp2 to be correlated with the development of fatty liver. Pharmacological inhibition of slc27a2a in zebrafish rescues steatosis and atrophy of the liver upon starvation. Further, down-regulation of FATP2 in drosophila larvae inhibits the development of starvation-induced steatosis, suggesting the evolutionary conserved importance of the gene in regulating fatty liver upon nutrition deprivation. Overall, our study identifies a conserved, druggable target to protect the liver from atrophy during starvation.

4.
Bull Math Biol ; 83(4): 26, 2021 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-33594536

RESUMO

Cell invasion and cell plasticity are critical to human development but are also striking features of cancer metastasis. By distributing a multipotent cell type from a place of birth to distal locations, the vertebrate embryo builds organs. In comparison, metastatic tumor cells often acquire a de-differentiated phenotype and migrate away from a primary site to inhabit new microenvironments, disrupting normal organ function. Countless observations of both embryonic cell migration and tumor metastasis have demonstrated complex cell signaling and interactive behaviors that have long confounded scientist and clinician alike. James D. Murray realized the important role of mathematics in biology and developed a unique strategy to address complex biological questions such as these. His work offers a practical template for constructing clear, logical, direct and verifiable models that help to explain complex cell behaviors and direct new experiments. His pioneering work at the interface of development and cancer made significant contributions to glioblastoma cancer and embryonic pattern formation using often simple models with tremendous predictive potential. Here, we provide a brief overview of advances in cell invasion and cell plasticity using the embryonic neural crest and its ancestral relationship to aggressive cancers that put into current context the timeless aspects of his work.


Assuntos
Modelos Biológicos , Invasividade Neoplásica , Neoplasias , Humanos , Neoplasias/fisiopatologia , Crista Neural/citologia
5.
Methods Mol Biol ; 2179: 107-114, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32939716

RESUMO

Live embryo imaging may provide a wealth of information on intact cell and tissue dynamics, but can be technically challenging to sustain embryo orientation and health for long periods under a microscope. In this protocol, we describe an in vivo method to mount and image cell movements during the epithelial-to-mesenchymal transition (EMT) of neural crest cells within the chick dorsal neural tube. We focus on describing the collection of images and data preparation for image analysis throughout the developmental stages HH15-21 in the chick trunk. Trunk neural crest cell EMT is crucial to development of the peripheral nervous system and pigment cell patterning. The methods we describe may also be applied to other cell and tissue phenomena at various chick developmental stages with some modifications.


Assuntos
Transição Epitelial-Mesenquimal/genética , Imagem Molecular/métodos , Crista Neural/ultraestrutura , Tubo Neural/ultraestrutura , Animais , Movimento Celular/genética , Embrião de Galinha , Tubo Neural/crescimento & desenvolvimento
6.
Dev Biol ; 461(2): 184-196, 2020 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-32084354

RESUMO

Vertebrate head morphogenesis involves carefully-orchestrated tissue growth and cell movements of the mesoderm and neural crest to form the distinct craniofacial pattern. To better understand structural birth defects, it is important that we characterize the dynamics of these processes and learn how they rely on each other. Here we examine this question during chick head morphogenesis using time-lapse imaging, computational modeling, and experiments. We find that head mesodermal cells in culture move in random directions as individuals and move faster in the presence of neural crest cells. In vivo, mesodermal cells migrate in a directed manner and maintain neighbor relationships; neural crest cells travel through the mesoderm at a faster speed. The mesoderm grows with a non-uniform spatio-temporal profile determined by BrdU labeling during the period of faster and more-directed neural crest collective migration through this domain. We use computer simulations to probe the robustness of neural crest stream formation by varying the spatio-temporal growth profile of the mesoderm. We follow this with experimental manipulations that either stop mesoderm growth or prevent neural crest migration and observe changes in the non-manipulated cell population, implying a dynamic feedback between tissue growth and neural crest cell signaling to confer robustness to the system. Overall, we present a novel descriptive analysis of mesoderm and neural crest cell dynamics that reveals the coordination and co-dependence of these two cell populations during head morphogenesis.


Assuntos
Embrião de Galinha/citologia , Cabeça/embriologia , Mesoderma/citologia , Crista Neural/citologia , Tubo Neural/citologia , Animais , Divisão Celular , Movimento Celular , Células Cultivadas , Galinhas , Simulação por Computador , Coturnix/embriologia , Ectoderma/citologia , Modelos Biológicos , Morfogênese , Imagem com Lapso de Tempo
7.
Mech Dev ; 148: 100-106, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28633909

RESUMO

During collective cell migration individual cells display diverse behaviors that complicate our understanding of group cell decisions of direction and cohesion. In vivo gene and protein expression analyses would shed light on the underlying molecular choreography. However, this information has been limited due to difficulties to integrate single cell detection methods and the simultaneous readout of multiple signals deep within the embryo. Here, we optimize and integrate multiplex fluorescence in situ hybridization by RNAscope, immunohistochemistry, and tissue clearing to visualize transcript and protein localization within single cells deep within intact chick embryos. Using standard confocal microscopy, we visualize the mRNA expression of up to 3 genes simultaneously within protein labeled HNK1-positive migrating cranial neural crest cells within 2day old cleared chick embryos. Gene expression differences measured between adjacent cells or within subregions are quantified using spot counting and polyline kymograph methods, respectively. This optimization and integration of methods provide an improved 3D in vivo molecular interrogation of collective cell migration and foundation to broaden into a wider range of embryo and adult model systems.


Assuntos
Movimento Celular/genética , Crista Neural/crescimento & desenvolvimento , Transcriptoma/genética , Animais , Embrião de Galinha , Regulação da Expressão Gênica no Desenvolvimento/genética , Imuno-Histoquímica , Hibridização in Situ Fluorescente , Microscopia Confocal , Crista Neural/metabolismo , Transdução de Sinais
8.
BMC Biol ; 14(1): 111, 2016 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-27978830

RESUMO

BACKGROUND: Collective neural crest cell migration is critical to the form and function of the vertebrate face and neck, distributing bone, cartilage, and nerve cells into peripheral targets that are intimately linked with head vasculature. The vasculature and neural crest structures are ultimately linked, but when and how these patterns develop in the early embryo are not well understood. RESULTS: Using in vivo imaging and sophisticated cell behavior analyses, we show that quail cranial neural crest and endothelial cells share common migratory paths, sort out in a dynamic multistep process, and display multiple types of motion. To better understand the underlying molecular signals, we examined the role of angiopoietin 2 (Ang2), which we found expressed in migrating cranial neural crest cells. Overexpression of Ang2 causes neural crest cells to be more exploratory as displayed by invasion of off-target locations, the widening of migratory streams into prohibitive zones, and differences in cell motility type. The enhanced exploratory phenotype correlates with increased phosphorylated focal adhesion kinase activity in migrating neural crest cells. In contrast, loss of Ang2 function reduces neural crest cell exploration. In both gain and loss of function of Ang2, we found disruptions to the timing and interplay between cranial neural crest and endothelial cells. CONCLUSIONS: Together, these data demonstrate a role for Ang2 in maintaining collective cranial neural crest cell migration and suggest interdependence with endothelial cell migration during vertebrate head patterning.


Assuntos
Angiopoietina-2/metabolismo , Crista Neural/citologia , Crista Neural/metabolismo , Angiopoietina-2/genética , Animais , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Movimento Celular/genética , Movimento Celular/fisiologia , Regulação da Expressão Gênica no Desenvolvimento/genética , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Codorniz , Transdução de Sinais/genética , Transdução de Sinais/fisiologia
9.
Dev Biol ; 365(1): 189-95, 2012 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-22387844

RESUMO

Cell proliferation is crucial to tissue growth and form during embryogenesis, yet dynamic tracking of cell cycle progression and cell position presents a challenging roadblock. We have developed a fluorescent cell cycle indicator and single cell analysis method, called CycleTrak, which allows for better spatiotemporal resolution and quantification of cell cycle phase and cell position than current methods. Our method was developed on the basis of the existing Fucci method. CycleTrak uses a single lentiviral vector that integrates mKO2-hCdt1 (30/120), and a nuclear-localized eGFP reporter. The single vector and nuclear localized fluorescence signals simplify delivery into cells and allow for rapid, automated cell tracking and cell cycle phase readout in single and subpopulations of cells. We validated CycleTrak performance in metastatic melanoma cells and identified novel cell cycle dynamics in vitro and in vivo after transplantation and 3D confocal time-lapse imaging in a living chick embryo.


Assuntos
Ciclo Celular , Rastreamento de Células/métodos , Análise de Célula Única/métodos , Animais , Embrião de Galinha , Fluorescência , Vetores Genéticos , Proteínas de Fluorescência Verde , Células HeLa , Humanos , Lentivirus , Imagem com Lapso de Tempo
10.
Dev Biol ; 358(2): 309-17, 2011 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-21864525

RESUMO

Examining calcium dynamics within the neural crest (NC) has the potential to shed light on mechanisms that regulate complex cell migration and patterning events during embryogenesis. Unfortunately, typical calcium indicators are added to culture media or have low signal to noise after microinjection into tissue that severely limit analyses to cultured cells or superficial events. Here, we studied in vivo calcium dynamics during NC cell migration and patterning, using a genetically encoded calcium sensor, GCaMP3. We discovered that trunk NC cells displayed significantly more spontaneous calcium transients than cranial NC cells, and during cell aggregation versus cell migration events. Spontaneous calcium transients were more prevalent during NC cell aggregation into discrete sympathetic ganglia (SG). Blocking of N-cadherin activity in trunk NC cells near the presumptive SG led to a dramatic decrease in the frequency of spontaneous calcium transients. Detailed analysis and mathematical modeling of cell behaviors during SG formation showed NC cells aggregated into clusters after displaying a spontaneous calcium transient. This approach highlights the novel application of a genetically encoded calcium indicator to study subsets of cells during ventral events in embryogenesis.


Assuntos
Sinalização do Cálcio , Crista Neural/citologia , Crista Neural/metabolismo , Animais , Padronização Corporal/fisiologia , Movimento Celular/fisiologia , Embrião de Galinha , Gânglios Simpáticos/citologia , Gânglios Simpáticos/embriologia , Gânglios Simpáticos/metabolismo , Indicadores e Reagentes , Microscopia Confocal , Modelos Neurológicos , Crista Neural/embriologia , Imagem com Lapso de Tempo
11.
Dev Dyn ; 240(6): 1391-401, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21472890

RESUMO

Neural crest (NC) cells invade the vertebrate embryo in ordered migratory streams, yet it is unclear whether cells communicate to maintain spacing and direction. Here, we examined NC cell communication in detail, using optical highlighting and photobleaching to monitor cell contact dynamics. We observed cytoplasmic transfer between NC cell neighbors through thin cellular bridges. The transfer of molecules between NC cells was bi-directional, not at equal rates, and independent of bridge dynamics. The cytoplasmic transfer was prevalent in recently divided NC cells. Molecular simulations, based on Brownian motion and measured cell volumes, predicted that simple diffusion could not account for observed cytoplasmic transfer rates. Cell tracking revealed that exchange of cytoplasmic material preceded the re-orientation of cells to the direction of migration. Our data suggest a mechanism by which NC cells communicate position information through the formation of cellular bridges that allow exchange of cytoplasmic material through active transport.


Assuntos
Comunicação Celular , Grânulos Citoplasmáticos/metabolismo , Corantes Fluorescentes/metabolismo , Genes Reporter , Junções Intercelulares/fisiologia , Crista Neural/citologia , Crista Neural/fisiologia , Animais , Animais Geneticamente Modificados , Transporte Biológico/genética , Transporte Biológico/fisiologia , Adesão Celular/genética , Adesão Celular/fisiologia , Comunicação Celular/genética , Células Cultivadas , Embrião de Galinha , Grânulos Citoplasmáticos/fisiologia , Junções Intercelulares/metabolismo , Modelos Biológicos , Crista Neural/metabolismo , Fotodegradação , Transfecção
12.
Blood ; 115(14): 2806-9, 2010 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-20154212

RESUMO

Runx1 is required for the emergence of hematopoietic stem cells (HSCs) from hemogenic endothelium during embryogenesis. However, its role in the generation and maintenance of HSCs during adult hematopoiesis remains uncertain. Here, we present analysis of a zebrafish mutant line carrying a truncation mutation, W84X, in runx1. The runx1(W84X/W84X) embryos showed blockage in the initiation of definitive hematopoiesis, but some embryos were able to recover from a larval "bloodless" phase and develop to fertile adults with multilineage hematopoiesis. Using cd41-green fluorescent protein transgenic zebrafish and lineage tracing, we demonstrated that the runx1(W84X/W84X) embryos developed cd41(+) HSCs in the aorta-gonad-mesonephros region, which later migrated to the kidney, the site of adult hematopoiesis. Overall, our data suggest that in zebrafish adult HSCs can be formed without an intact runx1.


Assuntos
Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Hematopoese/fisiologia , Células-Tronco Hematopoéticas/metabolismo , Mutação , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/metabolismo , Animais , Animais Geneticamente Modificados , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Embrião não Mamífero/citologia , Embrião não Mamífero/metabolismo , Células-Tronco Hematopoéticas/citologia , Mesonefro/citologia , Mesonefro/embriologia , Mesonefro/metabolismo , Glicoproteína IIb da Membrana de Plaquetas/biossíntese , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...